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NOMENCLATURE
1, radiation intensity;
X, nondimensional co-ordinate in plane geometry;
s cosine of angular variable in plane case;
d, optical distance between plates ;
n, Heaviside function;
u total energy density;
E, exponential functions;
J, variational functional ;
q.4, normalized heat transfer;
P Euler’s constant ;
rr, nondimensional radial co-ordinate in cylindri-
cal geometry
Ry, R;, radii of inner and outer cylinders respectively;
2, unit angular vector;
8, ¢, angular variable in cylindrical case;
n, unit vector in the radial direction;
r L, H,
Cis
{Cyy)1,  pauxilliary functions defined in the text;
(Cl 1)27
Cy
pi k. } Auxilliary variables;
1.K, modified Bessel functions,

1. INTRODUCTION

THE PROBLEMS of steady state radiative heat transfer between
infinite parallel plates and concentric cylinders have been
studied extensively in the literature (e.g., see Refs [1-3] for a
detailed bibliography). For the former problem several
numerical and theoretical (invariant imbedding, Case’s
method) methods have been used while the latter problem
has been solved only by the use of the Monte Carlo
technique.

Though the variational methods have been used quite
extensively to study various probiems in neutron transport
{e.g., see Refs {4, 5]) and rarefied gas dynamics (e.g, see
Refs [6, 7]) their use in radiative transfer [8] has been still
rather limited. In this note we show that for the above

problems the variational methods yield very accurate
results with relatively less computational effort. For the
simplicity we shall treat the case of a grey gas in radiative
and local thermodynamic equilibrium (see Refs [1, 2]) en-
closed between diffusely reflecting surfaces though it appears
that the method can be easily applied to more complicated
cases. We note that for this problem it is adequate [2, 3] to
consider the fundamental case in which both the walls are
black and one of them is at zero absolute temperature. In this
note only the method and the results will be stressed, since
the details regarding the formulation of the problem etc. can
be found elsewhere (e.g., see Refs [1, 2]).

2. PLANE PARALLEL PLATES
Here we consider the equation (2)

H

al 1
—— X, = — U ! 1
,uax+1(t 1) 3 jl(x,u)du (1)
-1
with the boundary conditions:
R
1(~—5,n)=1, u>0
J @
I '23# =0’ #<O

integrating equation (1) we get,
d
Kx, p) = n{u)exp [" (x + 5) /ﬂ]

1 X
+ % {ﬂ(#) '[ dx’ w(x'Yexp [ —(x — x)/u]
-8/2
d/2

- —u j' dx’u(x'}exp [—(x — x')/#]} (3
in whick

=1 u>0; fw=0 u<0
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and

]
ux) =% § Hx, wdu 4
-1
For «(x), equation {3) is easily converted to an integral
equation and we have
/2
d 1 ,
u(x) =|E, x+§ +§ dx' E(jx — x'}) udx’)
—#2

in which E{x} arc the well known exponential functions
{10]. Equation (5) can be derived from the functional [4-7]

)

di2

J dx’ Ey(jx — x'|) #(x")

]
- 1 + = \J
2E ;i1 x 5}

which takes a minimum value for & = u, the solution of
equation (5), and

d/2
Ji) = f dx &(x) [ﬁ(x) - %

~£{2

-d

el = — j dxu(x)lf,(x &§>

Y

{7

Now the normalized heat transfer between the plates is
given by

1
gx)=2 §1 du s lx, ) 8

and is easily shown to be constant. Now svaluating this at
x = —d/2 and using equation (3), after some algebra we
find that

g =1+ Juul#) ®)
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for it we considered a simple trial function Ax + B, The
oumerical results for different values of 4 are given in
Table 1, and are in excellent agreement with the “exact”
results [9]. In this, the following integrals were useful:

2 d = d a-~y
[ ool 2 6)
o

-di2 r=
nt {1y
- ?}!{ mrr E’"’”id)}
E a
. n!
J‘ X*Eflx — xPdy = Z(N ey
~di2 pul

" A\t
X{::?“")+11"(5>
x [‘{—1?‘}5?*2(;{ + X) + E. . (g - %}}

Further for the above trial function, using the asymptotic
expansions for E, function (10), it is easily shown that

Ford € 1,

d* a3
g=1-4d +~2~{i§o{3}-3egé} +~3-{§; + dlogd

+ W4 - O (19
and ford » 1,
41 171 81 341 2 .
i1TiTs@EtipTsate v Uw
Here

Gl

W(m) = —v 4»21—, n>1
n

]

Table 1. Radiative heat transfer between paraliel plates

Optical “ - d» |1

. Exact _— d<l

thickness Variational .
d (Ref. 9] Equation (10) £/ avion (11a)  Equation (11b)
o1 09157 09157 09159
02 (8491 08492 08498
05 07040 07042 07090
10 0-5532 0-5534
20 03900 03901
30 0-3016 03017 03199 03016
40 02461 02513 02459
50 02077 02091 02076
0 01797 01800 01797
70 01584 01584 01583
80 01416 01416 01415
30 01280 01280 01279
100 01168 01167 01167
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v(1) = -y
y=057721 ---.

We note that for d » 1, Ferziger and Simmons [2] and
Heaslet and Warming [11] also give a simple and very useful
formula:

4
3

=d+220

q (11b)

in which,
2o = 0-710446.

The numerical values corresponding to the expression
(10), (11a) and (11b) are also given in Table 1.

3. CONCENTRIC CYLINDERS

For two concentric cylinders of radii R, and R,, using
cylindrical symmetry, we easily find that

Ir, 6, ¢) = n(¢ — Pexp(—[r - R,|)
Ir= Ryl
+{nido ~ @) [ dlr —rlexp(~jr - rhulr)
Ir - Ral
+ (¢ — ¢o) 0_\' ;rr ~rlexp(=|r-rhulr). (12
Here r is the radial distance of a point from the axis of

the cylinders, and Q = (6, ¢) is the direction of the line of
observation. Also,

1
ur) = [ Iir,6,¢) 4@ (13)
/2 __ in )t
Ir_r,|=rcos¢¢(r. r? sin® ¢) (14
sin §
and
¢o = sin~! —I% (15)

Now for (r), equation (12) is easily converted into an
integral equation:

w(r) = p(r) + Lu(r) (16)
in which:
1 ®
p(r)=41—n fdu dpexp(—|r —Ry|), u=cos6 (17
S1 <%
and
1 '™ Ir=R,l
1
Lu(r) = 4—7[{ dy J. do djr —r'lexp(—[r ~r')u(r)
-1 —~®0 0
1 2x-¢o r—R,|
+ j du do djr—~r|exp(—jr - r’|)u(r’)}. (18)
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Now the normalized radial heat transfer between the
cylinders is given by

q = %jﬂ.n, I(r, 2)dQ 19)

where n.is a unit vector in the radial direction. Therefore,
2x

q, = :—Jdﬂ sin 6 cos 6 j dopcos ¢ I(r, 6, d) (20)
(4]

and is easily shown to be a constant. Evaluating this at
r = R,, after a few transformations and some algebra we
find that

R (r* — R}

4
qr=1~—'[ drru(r)J‘ dp
R, x =R,
§ ol — (R + p*)]
{R, +1* - p*1 [0 — (R, ~ 21}
[ o[-+ P
“JET @

(2h
°

Also after some transformations we find that

(r* — R
pir) = ;J‘ dp

r-R;

p{r* — (R} + p?)}
{lto +r? — RN [R} — (0 — I}

H (2 4
§ §d,M_1_ 22

(0 + 2
Thus
=1 4Jdr ) pir).
q = —R_x r u(r) p(r).

Ry

Now equation (16) is equivalent to minimizing the functional

23)

R;
J@) = § drrap) [#r) — L) - 2p(r)] (29)
R;
and
&,
Jielll) = —j dr r ulr) p(r). 25)
Rs
Hence J,,, is directly related to ¢, and we have
4
4 = 1+ -"Jmln(ﬁ)- (26)
R,
Now for the trial function
i(r) = Alogr/R, 27
we find that
J(il) = A2C,, + AC,. (28)
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The expressions for C,, and C,, which at first appear rather
complicated, can be .considerably simplified by use of
several transformations and some lengthy aigebra. Thus,
we find that

n R, cos9 + (R} — Rjsin? g)*

2R

C,y = -—;‘- j. d¢cos ¢ |dp

*/2 6

x log [{R} + p? — 2Rypcos 9}*/R,] Kizlp)  (29)

in which Ki,(x), sometimes known as Bickley functions, are
the well studied [10] integrals of modified Bessel functions,
ie,

Kifx) = | Kn-y()dt (30)
in particular
Kiyix) = x{K(x) ~ Ki ()} G
and
Cit = (Cih +{Cy1 (32
* in which
H
R\? R R,
(Cuas = (Rx losi—:) f dk I, (—,;) K, («,—;)
3
1
o ()
- Zkllog-R—z-jdkkI‘ (R) K, %
0
R R
+ R, log—ij‘dkk{ll (—ki> K, (—k-i)
)x ()
1 o (k) K (k
R R
ez ae s (8) 0 (9
]
’ R R
- jdk k1, (~k—‘) Ko (7’)
Q
¢ R R
- J dk k2 Io (—k—’) Ko (—f) 33)
0
and,
{2 =2
(Ci1)a = %‘- dé j d¢ cos ¢ exp(—~2R, cos ¢ sec 6)
o g
x H¥6,.¢,.R;,,Ry) (34
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in which
Rycosd + (R} — Risin? gt

H(8, ¢,R,, Ry) -——-J‘ dsexp(—ssec ¢)

o Rln‘ 5V NE e
x 108 ‘E;{'E:) + <‘R—‘>COS¢+ }' . (35)

Here I and K are modified Bessel functions. The integrais
in above expressions can be evaluated quite conveniently by
use of Gaussian quadratures (see used a 10-point formula for
a single integral). The numerical results for a few selected

Table 2. Radiative heat transfer between concentric cylinders

Optical Radius ratio R/R,
thickness
R, — R o1 o5 09
01 09893 09677 0:9462
05 0-9464 0-8476 0-7688
1-0 0-8937 07225 06167
20 07956 0-5446 04371
30 0-7105 04313 0-3367
40 06377 0-3549 02727
50 0-5763 03010 0-2291
&0 0-5250 0-2615 01976
70 04810 02308 01738
80 04429 02060 01549
90 04102 0-1864 1398
100 03821 0-1703 01278

Table 3. Radiative heat transfer between concentric cylinders
(Heaslet and Baldwin, Ref. [12])

1

§ v m—
3R, R,
1+ 3 log Z,
Optical Radius ratio R,/R,
thickness
R, - R, 131 05 o9
01 09811 0-9505 09336
0 09214 0-7936 07376
10 08390 0-6579 0-5843
20 07226 0-4902 0-4128
30 0-6346 0-3906 0-3191
40 0-5657 0-3247 0-2600
50 0-5103 0-2778 02949
60 0-4648 02427 0-1898
70 0-4267 2155 01672
80 0-3944 0-1938 0-1494
9-0 0-3667 01760 0-1351
100 03426 01613 01232
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values of radius ratio R;/R, and the optical thickness
R; — R, are given in Table 2. These results appear in
excellent agreement with Monte Carlo results of Perlmutter
and Howell [3]. In fact in view of our results for parallel
plates, we can assert that results reported in Table 2 are
more accurate than results of Ref. [3].

We note that for this case, Heaslet and Baldwin [12] give
an approximate relation,

1

~ 1+ 3R, log Ry/R, (36)

q

The results corresponding to this expression are given in
Table 3, and appear to compare somewhat less favorably
with the results given in Table 2.
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NOMENCLATURE
contact spot radius;

»

A, contour area radius;

b,  heat flux tube radius;

B, heat channel radius;

k,  thermal conductivity, k = 2kk,/(k, + k,);
N, npumber of contact spots;

R, overall thermal contact resistance, [°C/W].

t This work was done in the Heat Transfer Laboratory,
Department of Mechanical Engineering, Massachusetts
Institute of Technology, and was sponsored by the National
Aeronautics and Space Administration under Contract
No. Nas 7-100.

‘Greek characters

B,  maldistribution factor (1 < B < 1-4);

y,  ratio A/B;

€, ratio a/b;

¥,  constriction factor defined by equations (2) and (3).
Subscripts

1,2, metals1and2;
0,  microscopic;
¢ macroscopic ;

Superscript
T, factor based upon uniform temperature.

INTRODUCTION
IN A RECENT article [1] the authors showed qualitatively



