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radiation intensity ; 
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cosine of angular variable in plane case ; 
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variational functional ; 
normalized heat transfer ; 
Euler’s constant ; 
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a geometry 
radii of inner and outer cylinders respectively ; 
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angular variable in cylindrical case ; 
unit vector in the radial direction ; 

(C, 111. auxilliary functions dcfmed in the text; 
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G. 
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Auxilliary variables ; 

I,. k’,, modified Bessel functions. 

1. ~ODU~ON 

THE prtommds of steady state radiative heat transfer between 
infinite paraliel plates and concentric cylinders have been 
studied extensively in the literature (e.g., see Refs [l-3] for a 
detailed bibliography). For the former problem several 
numerical and theoretical (invariant imbeddinp Case’s 
method) methods have been used while the latter problem 
has been solved only by the use of the Monte Carlo 
technique. 

Though the variational methods have been used quite 
extensively to study various problems in neutron transport 
{e.g., see Refs [4, 51) and raretied gas dynamics (e.g., see 
Refs [6, ‘71) their use in radiative transfer [8] has been still 
rather limited. In this note we show that for the above 

problems the variational methods yield very accurate 
results with relatively less computational effort. For the 
simplicity we shall treat the case of a grey gas in radiative 
and local thermodynamic equilibrium (see Refs [I, 2-J) en- 
closed between diffusely reflecting surfaces though it appears 
that the method can be easily applied to more complicated 
casea We note that for this problem it is adequate [2,3] to 
consider the fundamental case in which both the walls are 
black and one of them is at zero absolute temperature. In this 
note only the method and the results will be stressed, since 
the details regarding the formulation of the problem etc. can 
be found elsewhere (e.g., see Refs [I, 23) 

XPLANFP ARALLEL PLATES 

Here we consider the equation (2) 

with the boundary conditions : 
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equation (5)+ and 

Now the normalized 
given by 

heat transfer between the platm is 

and is easily shown to be constant. NCJW evafuatmg this at 
x = -d/2 and using equation (3b aftg some algebra we 
find that 

4 = 1 f J,,(@ (9) 

Further for the above trial futxtio~ using the asymptotic 
expansions for E. function (1% it is easily shown that 
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w = -Y 

y = 0*57721- - -. 

We note that for d * 1, Ferxiger and Simmons [2] and 
Heaslet and Warming [ 1 l] also give a simple and very useful 
formula : 

t 
4=iTco UW 

in which, 

2, = 0710446. 

The numerical ~ahm corresponding to the expression 
(10X (lla) and (lib) are also given in Table 1. 

3. CONCENTRIC CYLINDERS 

For two concentric cylinders of radii RI and R,, using 
cylindrical symmetry, we easily find that 

I(r, 6,6) = MO - $) exp (- Ir - RI I) 

+ {tj(& - I$) d”iyi’- r’l exp( - Ic - r’l)u(r’) 

+ q@ - &J f-c$ - r’j exp (- Ir - r’l) 4r’) . (12) 
0 

Here r is the radial distance of a point from the axis of 
the cylinders, and D = (6,+) is the direction of the line of 
observation. Also, 

u(r) = -$ j W, 64) da (13) 

and 

Ir - r’l = 
rcos# + (r’2 -rzsiIPf$)+ 

sin 0 
(14) 

R, & = sin- * -. (15) 
r 

Now for u(r), equation (12) is easily converted into an 
integral equation : 

u(r) = P(r) + h(r) (16) 

in which: 
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Now the normalixed radial heat transfer between the 
cylinders is given by 

where II I is a unit vector in the radial direction. Therefore, 

q, = ~~d~smsrns~rd(~s0l(r,~,~) (20) 

0 0 

and is easily shown to be a constant Evaluating this at 
r = R,, after a few transformations and some algebra we 
find that 
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Also after some transformations we find that 
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Thus 

4, = 1 - c 
1 I 

dr r u(r) p(r). (23) 

R, 

Now equation (16) is equivalent to minimizing the functional 

J(ii) = 7 dr r ci(r) [g(r) - LG(r) - 2p(r)] (24) 
RI 

and 

Lia(U3 = 
4 

*I 
dr r u(r) p(r). 

R, 

Hence J,, is directly related to q, and we have 

(2% 

q,=l+ g Jrd~. 
1 

Now for the trial function 

g(r) = A log r/R2 

we find that 

(27) 

J(j) = A2Cii + Xi. (28) 
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The expressions for C, f and C,, which at first appear rather in which 
complicated, can be .considerably simplified by use of 
seved transformations and some lengthy algebra Thus, 
we find that W, 4, RI, Rz) = i 

R,EoI~+(R:--R:~~~+) 

dsexp(-ssec# 

R/Z 0 

x log [{R: + pz - 2R,pcos#jf/Rz] l&(p) W Here I and K am modified Bcssd functions. Tbc integrals 
in above expressions can be evaluated quite conveniently by 

in which Q,(x), sometimes known as Bickky functions, arc use of Gaussian quadraturcs (see used a lO-point formula for 

the wall studied flO] integrals of mod&d B8ssal functions, a single integral). Tbc numerical rcauits for a few sclccted 

i.e., Table 2. Radiative heat transfer between concentric cylinders 

Kin(x) = [K,_,(r)dt 
_I 

in particular 

Wx) = x{K,(x) - I&(x)] 
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and 

c,, = (C,t), + (C,I)Z 

* in which 

and, 

Table 3. Radiative heat transfer between concenlric cylinders 
(H&et and Baldwin, Ref. [ 121) 

optical 
thickness 
R, - RI 

Radius ratio RJR, 

0.1 o-5 BP 

(33) 
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vale of radius ratio RI/R2 and the optical thickness 
R, - R, are given in Tabk 2 These results appear in 
excellent agwment with Monte. Carlo ro~ults of Perlmutter 
and HoweIl [3]. In fact in view of our results for parallel 
plates, we can assert that results reported in Table 2 are 
more accurate than results of Ref. 133. 

We note that for this case,,,Heaskt and Baldwin [12] give 
an approximate relation, 

1 

’ N 1 + $RR, log R2fR, 

The reaultx corresponding to this expression am given in 
Table 3, and appear to cornpart somewhat kss favorably 
with the results given in Table 2 
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NOMENCLATURE 

0, contact spot radius ; 
A, contour area radius ; 
h heat flux tube radius ; 
8 heat channel radius ; 
k, thermal conductivity, k = Zk,kJ(k, + k,); 

N, number of contact spots ; 
R, overall thermal contact resistance, [“C/w]. 

t ,Thi~ work was done in the Heat Transfer Laboratory, 
Department of Mechanical Enginaring Mamacbuaetta 
Institute of Technology, and was sponeored by the National 
Aeronautic and Space Administration under Contract 
No. Nas 7-100. 

Greek characters 
p, maldktribution factor (1 < fi c 1.4) ; 
Yt ratio L/B; 
f ratio a/b ; 
Jr, constriction factor defined by equations (2) and (3). 

subscripts 
1,2, metakland2; 
0, microscopic ; 
c, macroscopic ; 

Superscript 
T, factor based upon uniform temperature. 

INTBODUCTlON 
IN A RECENT article [l] the authors showed qualitatively 


